Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Adicionar filtros

Base de dados
Tópicos
Ano de publicação
Tipo de documento
Intervalo de ano
1.
BMC Public Health ; 23(1): 935, 2023 05 24.
Artigo em Inglês | MEDLINE | ID: covidwho-20244505

RESUMO

BACKGROUND: The COVID-19 pandemic was a "wake up" call for public health agencies. Often, these agencies are ill-prepared to communicate with target audiences clearly and effectively for community-level activations and safety operations. The obstacle is a lack of data-driven approaches to obtaining insights from local community stakeholders. Thus, this study suggests a focus on listening at local levels given the abundance of geo-marked data and presents a methodological solution to extracting consumer insights from unstructured text data for health communication. METHODS: This study demonstrates how to combine human and Natural Language Processing (NLP) machine analyses to reliably extract meaningful consumer insights from tweets about COVID and the vaccine. This case study employed Latent Dirichlet Allocation (LDA) topic modeling, Bidirectional Encoder Representations from Transformers (BERT) emotion analysis, and human textual analysis and examined 180,128 tweets scraped by Twitter Application Programming Interface's (API) keyword function from January 2020 to June 2021. The samples came from four medium-sized American cities with larger populations of people of color. RESULTS: The NLP method discovered four topic trends: "COVID Vaccines," "Politics," "Mitigation Measures," and "Community/Local Issues," and emotion changes over time. The human textual analysis profiled the discussions in the selected four markets to add some depth to our understanding of the uniqueness of the different challenges experienced. CONCLUSIONS: This study ultimately demonstrates that our method used here could efficiently reduce a large amount of community feedback (e.g., tweets, social media data) by NLP and ensure contextualization and richness with human interpretation. Recommendations on communicating vaccination are offered based on the findings: (1) the strategic objective should be empowering the public; (2) the message should have local relevance; and, (3) communication needs to be timely.


Assuntos
COVID-19 , Comunicação em Saúde , Humanos , COVID-19/epidemiologia , COVID-19/prevenção & controle , Cidades , Processamento de Linguagem Natural , Pandemias/prevenção & controle , Saúde Pública
2.
Sensors (Basel) ; 21(18)2021 Sep 08.
Artigo em Inglês | MEDLINE | ID: covidwho-1468446

RESUMO

Edge intelligence (EI) has received a lot of interest because it can reduce latency, increase efficiency, and preserve privacy. More significantly, as the Internet of Things (IoT) has proliferated, billions of portable and embedded devices have been interconnected, producing zillions of gigabytes on edge networks. Thus, there is an immediate need to push AI (artificial intelligence) breakthroughs within edge networks to achieve the full promise of edge data analytics. EI solutions have supported digital technology workloads and applications from the infrastructure level to edge networks; however, there are still many challenges with the heterogeneity of computational capabilities and the spread of information sources. We propose a novel event-driven deep-learning framework, called EDL-EI (event-driven deep learning for edge intelligence), via the design of a novel event model by defining events using correlation analysis with multiple sensors in real-world settings and incorporating multi-sensor fusion techniques, a transformation method for sensor streams into images, and lightweight 2-dimensional convolutional neural network (CNN) models. To demonstrate the feasibility of the EDL-EI framework, we presented an IoT-based prototype system that we developed with multiple sensors and edge devices. To verify the proposed framework, we have a case study of air-quality scenarios based on the benchmark data provided by the USA Environmental Protection Agency for the most polluted cities in South Korea and China. We have obtained outstanding predictive accuracy (97.65% and 97.19%) from two deep-learning models on the cities' air-quality patterns. Furthermore, the air-quality changes from 2019 to 2020 have been analyzed to check the effects of the COVID-19 pandemic lockdown.


Assuntos
COVID-19 , Aprendizado Profundo , Inteligência Artificial , Controle de Doenças Transmissíveis , Humanos , Inteligência , Pandemias , SARS-CoV-2 , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA